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Summary: The value of CD4 lymphocyte counts as a surrogate marker in
persons with advanced human immunodeficiency virus infection during an-
tiretroviral treatment was assessed using longitudinal models and data from the
Terry Beirn Community Programs for Clinical Research on AIDS didanosine/
zalcitabine trial of 467 HIV-infected patients. Patients with AIDS or two CD4
counts of <300 who fulfilled specific criteria for zidovudine intolerance or
failure were randomized to receive either 500 mg didanosine (dd]) daily or 2.25
mg zalcitabine (ddC) per day. Absolute CD4 counts were recorded at study
entry and at as many as four visits. Patients were followed for clinical disease
progression and survival. At 2 months, the difference in mean CD4 count from
baseline was + 15.4 cells/mm? in the ddI group but — 1.3 cells/mm? in the ddC
group. Patients assigned to ddI had a greater chance of a CD4 response at 2
months than those on ddC, yet only those in the ddC group with a response
showed significant improvement in progression of disease or survival com-
pared with ddC nonresponders, ddl responders, and ddI nonresponders (p =
0.03). We conclude that a CD4 response does not necessarily correlate with
improved outcome and is therefore not a useful surrogate marker in these
patients. Key Words: Surrogate marker—Didanosine—Zalcitabine—ZDYV fail-
ure—ZDYV intolerance.

The absolute number of CD4 lymphocyte cells in
the peripheral blood is used extensively as a prog-
nostic factor and as a surrogate marker for progres-
sion of disease and for death in clinical studies of
human immunodeficiency virus (HIV) infection. As
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a prognostic tool, the CD4 count is used to initiate
and modify antiretroviral treatment, for initiation of
primary prophylaxis against various opportunistic
infections (1,2), and for selection and stratification
of patients in clinical trials (3,4). The utility of a
change in CD4 count related to antiretroviral drugs
as a surrogate end point in efficacy trials has also
been studied. The hope has been that an early eval-
uation of such changes can reliably predict their
efficacy for preventing or delaying eventual clinical
outcome, such as progression of disease or death
(5). An effective surrogate marker could markedly
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reduce the amount of time and cost needed to com-
plete pivotal drug trials and make policy decisions
with regard to their efficacy.

As proposed by Prentice (6), in order for changes
in CD4 to be an adequate surrogate, they must com-
pletely capture the effectiveness of the drug in de-
laying the time to the true end point. Yarchoan et al.
(7) restated this definition in terms of the following
three criteria: (a) the marker must be prognostic for
the outcome, (b) the treatment(s) being studied
must change the marker, and (c) the prognostic
value of the marker must be independent of the
treatment(s). Many investigators have shown that
CD4 count is important for prognosis and also var-
ies with antiretroviral treatment, thus fulfilling the
first two criteria (7). Several recent articles have
cast doubt on the fulfiliment of the third criterion.
Lin et al. (8) tested whether the hazard rate of the
clinical end point at any follow-up time was inde-
pendent of treatment, conditional on previous CD4
history. They concluded that CD4 count was not an
adequate surrogate for first opportunistic infection
in the Burroughs Wellcome 02 trial, nor for the de-
velopment of the acquired immunodeficiency syn-
drome (AIDS) or death in AIDS Clinical Trials
Group Protocol 016 (ACTG 016). Choi et al. (9) and
Lagakos (10) also found CD4 count to be an incom-
plete surrogate marker for AIDS using results from
the original ACTG 019 comparing progression to
AIDS of asymptomatic patients for two dose groups
of zidovudine (ZDV) and placebo.

Recent trials of other antiretroviral drugs in ad-
dition to or in place of ZDV in patients with ad-
vanced disease have also examined the relationship
between CD4 counts and treatment. Before clinical
endpoint data were available, surrogate marker data
from ACTG 116B/117 on improvements in p24 an-
tigen levels, CD4 counts, and weight led to Food
and Drug Administration approval of didanosine
(ddl, Videx) for patients intolerant of or failing ZDV
(4). After 8 weeks on ddl, patients had a median
change in CD4 count of +3 cells (750 mg daily) and
+2 cells (500 mg daily) compared with a median
change of — 10 cells for those continuing on ZDV.
Other ACTG studies have shown similarly small
changes in CD4 counts associated with treatment,
but no clear association with clinical outcome
(11,12).

The didanosine/zalcitabine study conducted by
the Terry Beirn Community Programs for Clinical
Research on AIDS (CPCRA) provided additional
data relevant to the issue of using CD4 as a surro-

gate marker. This study was a direct randomizeg
comparison of ddI and zaicitabine (ddC) in patients
intolerant of or failing ZDV therapy. The principal
end points were progression of disease, death, and
toxicity, but, in addition, absolute CD4 lymphocyte
counts were measured at baseline and at specified
intervals during follow-up. The main report of the
study appears elsewhere (13): herein we analyze the
associations among treatment, CD4 counts over
time, and clinical outcome.

METHODS
Study Design

The ddl/ddC study was a multicenter randomized open-label
clinical trial to compare the clinical efficacy and safety of ddl and
ddC in patients with HIV infection who could not tolerate ZDV
or who had experienced clinical disease progression while taking
ZDV. It was conducted by the CPCRA. a consortium of 17 ad-
ministrative units funded by the National Institute of Aliergy and
Infectious Diseases to conduct community-based clinical trials at
>130 primary care clinical sites.

The details of the conduct and results of the dd1/ddC study are
described by Abrams et al. (13): only a summary of the relevant
points is given here. HIV-infected patients were eligibie if they
had two CD4 counts of <300 celis or AIDS. and if they fulfilled
specific criteria for ZDV intolerance or ZDV failure. The ran-
domization was to treatment groups of either 500 mg ddl per day
or 2.25 mg zalcitabine ddC, stratified by clinical unit and by ZDV
intolerance versus failure. These standard doses could be ad-
Justed for patients with lower body weight or those experiencing
toxicities.

The study opened December of 1990 and completed enroil-
ment of 467 patients the following September. The study con-
cluded as planned in September of 1992, with a minimum of 12
months of follow-up and an average of 15.6 months. Interim
analyses and progress reports were reviewed by an independent
data safety and monitoring board five times during the conduct of
the study.

The main end points were progression of disease, including
death (as defined for CPCRA studies); study drug intolerance (as
defined by the protocol); and death from any cause. Clinical
event reports were reviewed by a blinded committee. Absolute
CD4 lymphocyte counts were measured at baseline and at the 2-,
6-, and 12-month visits (and a few at 18 months), but less fre-
quently if the patient refused or was too ill for testing.

Modeling of Changes in Individual CD4 Counts
over Time

As discussed in more detail in the Appendix, we used a hier-
archal random effects model for modeling sequential CD4 counts
(14). It is similar to a standard regression model but allows for
variation between patients and correlation among values within a
patient, as well as the incorporation of treatment group and prog-
nostic variables as covariates. In order to examine the relation-
ship between treatment and a possible **boost™ in CD4 count 2
months after starting treatment, we estimated CD4 trajectories
with possibly different slopes before and after this 2-month
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change point. We also allowed these trajectories to depend on
three important covariates: treatment group (either ddI or ddC),
previous AIDS diagnosis (either yes or no), and baseline Kar-
nofsky score. Our primary interest was whether CD4 trajectories
differed for patients taking ddI compared with ddC and whether
a CD4 response translated into a delay in progression of disease
or improved survival and the association with treatment and
baseline prognosis.

Numerical estimation of random effects models requires eval-
uation of complicated integrals. Fortunately, a recently devel-
oped method known as the Gibbs sampler (15) allows for the use
of models of almost unlimited complexity. For example, Lange
et al. (16) used this method to model sequential CD4 counts for
a group of HIV-positive men in San Francisco.

Modeling the Probability of a CD4 Response at
2 Months

To determine whether either drug produced an increase in the
CD4 count at 2 months, we classified each patient as a ‘‘re-
sponder’’ or ‘*‘nonresponder,’”’ depending on whether or not the
CD4 count increased from its baseline value. The probability that
a patient was in the ‘‘responder’’ group was estimated using a
probit regression model, again evaluated using the Gibbs sampler
(17,18). Treatment group, previous AIDS diagnosis, and baseline
Karmnofsky score were potential covariates, as was a term for the
possible interaction between treatment and previous AIDS diag-
nosis. This model allowed us to study the association between
the covariates and CD4 response and also to estimate the prob-
ability of a CD4 response in subgroups of patients by treatment
and baseline prognosis. More details are included in the Appen-
dix.

Landmark Analysis of Clinical Outcome by
CD4 Response

Landmark analysis was performed on a portion of the data to
evaluate the clinical consequences of 2-month changes in the
CD4 lymphocyte count associated with the study drugs. First,
patients who died within 2 months of randomization (i.e., before
the landmark) were disregarded. Similarly, any progression of
disease that occurred within the first 2 months was ignored, and
the next subsequent event became the qualifying end point. As
before, patients were divided into CD4 responders and nonre-
sponders according to whether the 2-month CD4 count had de-
creased from baseline. Analyses of time to event for progression
of disease and for death by treatment group and by response
group were then performed on the modified data, including Kap-
lan-Meier curves and proportional hazards models.

RESULTS
Preliminary Descriptions

The ddl/ddC study enrolled 467 patients; 230 pa-
tients were randomized to receive ddI and 237 to
ddC. After an average follow-up of 15.6 months,
309 (66%) patients had experienced progression of
disease (including death), and 188 (40%) had died. A
third of all patients (164, or 35%) became study drug
intolerant, and 143 (57% of the 249 still living and
followed) had been permanently discontinued from

the original study drug. Vital status was unknown
for only four patients (1%). and 31 patients (7%)
were no longer participating in the study. We found
no statistically significant differences between
treatment groups for any of these factors except
survival, which was found to be better in the ddC
group (100 versus 88 deaths; p = 0.003) using a
proportional hazards model with stratification by
clinical unit and covariate adjusted for baseline CD4
count, Karnofsky score, and previous AIDS diag-
nosis. More details on the main results of the study
were reported by Abrams et al. (13).

The average CD4 count rose during the first 2
months in the ddl group but fell in the ddC group
(Table 1, mean CD4 at visit). After 2 months, the
counts tended to fall in the ddI group but appeared
to rise in the ddC group. The means of the changes
in CD4 counts (follow-up visit—baseline) tell a dif-
ferent story, showing a slow decline over time in
both treatment groups after the 2-month visit. The
ddC group appeared to deteriorate more slowly,
and the ddl group had lost the advantage of the
initial boost ~12 months after randomization.

The increase in the number of missing CD4
counts with follow-up is of statistical concern, al-
though the problem is unavoidable in long-term
studies of late-stage HIV patients. Although only 31
patients dropped out of the study and all were en-
rolled =12 months before the close of the of the
study, many patients had died and others refused or
were sufficiently ill that CD4 testing was omitted.
Those with missing CD4 counts at the 2-month visit
had slightly lower baseline values, on average, than
those with measurements, but differences were
about the same in the two treatment groups (mean
counts of 79 versus 65 for ddl, 74 versus 70 for
ddC). At later visits, the baseline values for those
missing CD4 counts were about the same as those
with measurements in the ddl group but were mark-
edly lower for those assigned ddC.

Not surprisingly, those patients who died during
the study had much lower baseline counts, on av-
erage, than those who survived. The two treatment
groups had approximately equivalent baseline CD4
counts, but more patients died in the ddI group.

Changes in Individual CD4 Counts over Time

A common method for summarizing the effect of
treatment on levels of CD4 is to examine the aver-
age change in counts from baseline, as we did in
Table 1. But our random effects model more effec-
tively uses the available data by allowing the inclu-
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TABLE 1. Mean of available CD4 countsimn?’ at baseline and SJollow-up visits

ddI ddCe
Fup Change Fup Change
Baseline visit in CD4 Baseline visit in CD4
CD4 CD4 (Fup-BL) CD4 CD4 (Fup-BL)
Visit and status N (mean) (mean) (mean) N (mean) (mean) {mean)
Baseline
All CD4 230 75 75 N/A 236 71 71 N/A
Alive, study end 130 104 149 93
Died during study 100 38 87 34
At 2-month visit
CD4 measured 182 79 91 +22 185 74 70 -4
CD4 missing, alive 38 65 41 70
CD4 missing, dead 10 40 10 15
At 6-month visit
CD4 measured 153 80 74 -6 157 80 62 -12
CD4 missing, alive 40 95 48 70
CD4 missing, dead 37 32 32 27
At 12-month visit® '
CD4 measured 103 100 79 =21 123 98 74 -24
CD4 missing, alive 33 95 42 58
CD4 missing. dead 64 27 56 30
At 18-month visit® ,
CD4 measured 22 9% 52 —-44 15 122 83 -39
CD4 missing, alive - 8 80 10 29
CD4 missing, dead 8 45 15 59

Fup, follow-up visit; BL, baseline; N/A, not applicable.

“ One patient in the ddC treatment group who died after 5 months was missing the baseline CD4 and is excluded from the table.
® Patients were excluded from all three CD4 categories, regardless of vital status, if the study closed before they could have their

12-month (n = 45) or 18-month (n = 389) visit. respectively.

sion of prognostic information and compensating
for temporal variability. We obtained an estimate of
the sequence of CD4 counts for subgroups of pa-
tients with a given set of prognostic factor values.
For example, the upper set of curves in Fig. 1 com-
pares the fitted CD4 trajectories in the two drug
groups of typical patients with a better prognosis
(Karnofsky score of 100 and no previous diagnosis
of AIDS). The fitted CD4 response is modest for
those in the ddI group and even smaller for ddC
recipients. The lower curves repeat these calcula-
tions for a typical patient with a poor prognosis
(baseline Karnofsky score of only 70 and previous
AIDS). The fitted CD4 counts start out nearly 100
units lower, with a barely perceptible boost in the
ddI group and a constant decay in the ddC group.
After the initial 2 months, the fitted trajectories de-
cay in all the subgroups at rates that are almost
identical for the two treatments, thus negating the
treatment differences hinted at in Table 1.

CD4 Response to Treatment at 2 Months

The probability of a 2-month CD4 response was
estimated using our probit model. Karnofsky score
was eliminated from the model because it did not

contribute. The estimates and 95% confidence in-
tervals for the weights associated with the remain-
ing covariates are shown in Table 2. The negative
weight for AIDS indicates that patients without a
previous AIDS diagnosis were more likely to expe-
rience a CD4 response. This was the only one of the
four confidence intervals to exclude zero, indicating
that previous AIDS diagnosis is the only statisti-
cally significant predictor of a change in CD4, at the
0.05 level.

Converting these results to estimates of the prob-
ability of response for different subgroups, we again
compared the ‘‘poor prognosis’ and ‘‘better prog-
nosis’’ patients, defined solely by whether they had
a previous diagnosis of AIDS. Table 3 reflects the
minor treatment effect, modest prognosis-treatment
interaction, and substantial difference by prognosis.
Patients without previous AIDS diagnosis had the
greatest chance of a response (60% for the ddl
group and 58% for ddC), while for those with a poor
prognosis the estimated probabilities were 52 and
39%, respectively. Notice that even for the group
with the best chance of response (good prognosis
patients assigned to ddlI), a substantial proportion of
patients were not expected to respond, in agree-
ment with the weak evidence in favor of a rise in
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TABLE 4. Effect of CD4 response and treatment group on survival
ddl ddC
Compared
No. Rate No. Rate

CD4 group N deaths (median)° N deaths (median)© RRY p valued
All patients 230 100 42.8(19) 237 88 35.1(29) 0.63 0.003
Landmark 221 92 47.0 (20) 228 80 37.8 (24) 0.62 0.004

(after 2 months)* )
CD4 change unk” 39 27 108.5 (10) 42 20 62.4 (15) 0.58 0.17
CD4 change < 0° 81 30 39.8 (23) 101 40 42.5 22 1.02 0.93
CD4 change = 0¢ 101 35 36.6 (29) 85 20 23.4 (36) 0.49 0.03
Comparison

RR (p value)® 0.78 (0.35) 0.50 (0.03)

e Patients who died within 61 days and progression of disease events that occurred within 61 days of randomization have been

excluded from the analysis.

b RR = relative risk (CD4 response/nonresponse) from proportional hazards model with stratification by unit and covariate adjusted
for baseline CD4 count, Karnofsky score, and previous AIDS diagnosis.

< Events per 100 person years starting 2 months after randomization: estimated median months to event: median = 2 + 12 X in 2/rate.

4RR = relative risk (ddC/ddl) from proportional hazards model with stratification by unit and covariate adjusted for baseline CD4

count, Karnofsky score, and previous AIDS diagnosis.

analysis was done by subgroups of the 2-month re-
sponse in CD4 count. The subgroup of responders
among patients assigned to ddC stands out using
death as the outcome variable (Fig. 2). This group
was significantly different when compared with the
nonresponders also taking ddC (p = 0.033) and
when compared with the response subgroups taking
ddl (both p = 0.03). In the ddI treatment group.
CD4 responders and nonresponders had almost the
same outcomes. Results for progression of disease
as an end point were similar.

DISCUSSION

There is littie doubt that the CD4 lymphocyte
count is a valuable prognostic indicator for oppor-
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tunistic disease or death and therefore continues to
guide treatment and is an important covariate in the
design and analysis of clinical trials. The CD4 count
thus fulfills the first Prentice criterion for an effec-
tive surrogate marker of clinical outcome. How-
ever, data from the ddI/ddC study of the CPCRA
are contradictory with respect to the second and
third criteria, as defined in the Introduction, and the
type and extent of missing data present a serious,
unsolvable problem.

The usual method for describing the pattern of
CD4 counts over time and the effect of treatment is
by the average change in the count since baseline at
each of the visits with CD4 measurements (Table 1).
Our random effects model for sequential CD4
counts captures the correlations among the obser-
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FIG. 2. Survival after 2 months by
2-month change in CD4 count and treat-
ment group.
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vations and accounts for individual variation better
than this method of analysis but still cannot entirely
overcome the problem of missing data. Little and
Rubin (19) showed that missing data are ‘‘ignor-
able”’ if they are missing at random and if the prob-
ability of being missing is not correlated with their
value or with treatment. Ignorable missing values
do not bias estimates of mean counts, although their
precision will be less than if they were based on all
the patients. Since the type of missing values were
different in the two treatment groups later in the
study, they were obviously not ignorable in analysis
of long-term effects. Even the random effects model
will tend to inflate any effects of treatment on sus-
taining the CD4 level because data from patients
who deteriorated early were simply not available
for inclusion. Although the CPCRA trial possibly
had more missing CD4 counts during follow-up than
comparable ACTG trials, all studies of advanced
HIV disease will increasingly have missing values
for dead or very ill patients with low initial counts.

On the other hand, because they were nearly
equivalent in the two treatment groups, missing val-
ues appear to have been only a minor problem dur-
ing the first 2 months of the study. Consequently,
our remaining analyses concentrated on the 2
month CD4 response associated with the two drug
groups, the predictors of those who responded, and
the clinical consequences. While we found evidence
that, on average, patients assigned to ddl had a CD4
response but the ddC group did not, the boost was
quite small. Figure 1 and Tables 2 and 3 show that
baseline prognostic variables were better predictors
of both the likelihood of a CD4 response and its
magnitude than was treatment group. Finally, al-
though more patients in the ddl group had a re-
sponse, the landmark analysis surprisingly showed
that only in the ddC group was a response associ-
ated with a better outcome. This association in the
ddC group may merely be because a good prognosis
at baseline (such as no previous AIDS diagnosis)
was predictive of a CD4 response as well as of a
delay in progression of disease or death without that
association necessarily being causal.

Arguably, a treatment for HIV disease may not
be deemed truly effective unless it has a dramatic
effect on the number of CD4 cells in peripheral
blood, but, certainly, none of the currently known
drugs have this degree of efficacy. In the CPCRA
study of ddI and ddC, as well as in ACTG studies of
these antiretroviral drugs, the participating patients
were much more immunocompromised than those

in the initial ZDV studies, and their CD4 responses
were much more modest. It may be that all of these
treatments are only rarely effective in patients with
advanced disease: hence there is little power for
detecting small differences in CD4 response, and
correlation with outcome may not be reliably esti-
mated. In addition, our patients had been on ZDV
for a considerable amount of time before random-
ization; the implications of switching to ddl or ddC
and of the possibility of cross-resistance are not
known. Nevertheless, our study, like others in the
recent literature, calls into question the value of
CD4 as a surrogate end point in efficacy studies of
antiretroviral drugs.

APPENDIX A

Random Effects Model

Our statistical model for sequential CD4 counts is sim-
ilar to a standard regression model but allows for varia-
tion between patients and correlation among values
within a patient. Let Y; denote the ™ CD4 measurement
on the /" patient. In our study, we had 467 patients and,
at most, five observations for each patient. The model,
first proposed by Laird and Ware (14),is Y; = ax; +
Bwy + €; where x;; is a list of known covariate values
(such as Karnofsky score, previous AIDS diagnosis, etc.)
and « is a corresponding list of unknown regression co-
efficients (weights). The value w; is another, typically
smaller list of known covariate values (here including
only measurement time and a constant term), and B, is a
corresponding list of unknown subject-specific regression
coefficients, which are assumed to be independently and
normally distributed. That is, each patient has his or her
own initial counts and decay slopes, but with an overall
pattern or prior distribution assumed. The ¢; are the re-
sidual errors.

In usual regression models the ¢; are independent (un-
correlated) normally distributed random variables, all
having the same mean. 0, and the same variance, o°. But
the assumption of complete independence would be inap-
propriate here, since a single individuai’'s CD4 counts
measured over time are correlated with each other; that
is, Corr(Y;,Y,) = 0. The desired nonzero correlations
among observations within the same individual are in-
duced by the randomness of the B, which are often re-
ferred to as random effects. This model can yield im-
proved estimation of characteristics both within and be-
tween patients. Since we were primarily interested in
seeing whether CD4 trajectories differed for patients tak-
ing ddI compared with ddC, the focus was on the coeffi-
cients corresponding to treatment group. The 8, coeffi-
cients were of secondary importance, since they describe
the idiosyncrasies of CD4 counts for individual patients.
Residual plots from the fitted model showed some evi-
dence of skew toward positive values, suggesting that a
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square root or log transformation of the data might be in
order. An analysis on the square root scale was also done
but was not presented, since it is more difficult to inter-
pret and the fitted model was qualitatively very similar to
Fig. 1.

In principle, models like ours can accommodate a far
broader class of features than described herein. In prac-
tice, however, more complicated models cannot be ana-
lyzed using traditional statistical methods, since the re-
sulting likelihood functions are extremely high dimen-
sional and analytically intractable. For this reason, we
adopted a Bayesian approach with a ‘‘noninformative’’
prior distribution for the B,, since little reliable previous
information was available. Numerical integration for
evaluation of the posterior distribution was carried out
using Monte Carlo integration and the Gibbs sampler
(15,16).

Using our random effects model for CD4 counts over
time, we obtained estimates of the posterior distribution
for each coefficient. We then used the first equation to
obtain an estimate of the sequence of CD4 counts for a
typical study subject having a given set of prognostic fac-
tor values (Fig. 1). The adequacy of our model was
checked by comparing it with several other candidates.
Those with fewer parameters (e.g., the standard regres-
sion model, where B; = 0 for all i) fit poorly, while those
with more parameters (e.g., the heterogeneous variance
model fitting a distinct error variance o, for each individ-
ual) led to poor convergence of the Gibbs algorithm.

Probit Model

We used probit regression, also evaluated with the
Gibbs sampler method (17,18) to model the probability of
a response or increase in the CD4 count. Defining p; as
the probability that patient i responded, let p, = d(y, +
Yiri + Y.a; + ysyra;), where ® denotes the cumulative
distribution function of a standard normal random vari-
able and the covariates r; and a, describe treatment group
and previous AIDS diagnosis, respectively. The v values
are unknown coefficients (or weights) multiplying the co-
variates, where v, is the weight of the treatment-AIDS
interaction term. In another model, baseline Karnofsky
score was used as a third covariate, but the fitted coeffi-
cient was negligible. We used probit regression in place of
the similar (but more common) logistic regression ap-
proach, since the former is more easily fit using the Gibbs
sampler. The posterior distributions for each of the ¥ co-
efficients were used to derive point and interval estimates
of the corresponding covariate effects (Table 2). In addi-
tion, given particular values of the covariates, the poste-
rior distributions were used with the probit equation
(above) to estimate the probability of a CD4 response in
subgroups of patients by treatment and baseline progno-
sis (Table 3).
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